Evaluation of the antagonistic potential of Bacillus sp. and Trichoderma harzianum in the biocontrol of Colletotrichum gloesporioides
DOI:
https://doi.org/10.55892/jrg.v7i15.1708Keywords:
Bio-inputs, Biological control, Microbial antagonism, Agricultural diseasesAbstract
In Brazil, the use of biological control is growing at an annual rate of 25%, driven by scientific advances in the production of bioinputs, which provide sustainable alternatives to the use of chemical pesticides. Bioinputs, such as Bacillus spp. and Trichoderma harzianum, have demonstrated efficacy in controlling pathogens such as Colletotrichum spp., a disease-causing agent in agricultural crops, and are a promising approach for more sustainable agriculture. Thus, the general objective of the study was to evaluate the antagonistic activity of strains of Bacillus sp. and Trichoderma harzianum in the biocontrol of the pathogenic fungus Colletotrichum gloeosporioides under in vitro conditions. The study was carried out at the Quality Control Laboratory of the company Solubio Tecnologias Agrícolas, with isolation of the fungus C. gloeosporioides from papaya fruits (Carica papaya L.) showing typical symptoms of rot and the isolates Bacillus spp. and T. harzianum, used for the experiment, belong to the company's collection of microorganisms, which were multiplied for use in the experiments. The paired cultivation method was used in Petri dishes with BDA medium, incubated at 25°C for seven days. The results showed that T. harzianum presented greater antagonistic efficacy, surpassing the Bacillus spp. isolates in inhibiting the growth of C. gloeosporioides. Bacillus spp. also developed significant efficiency, with mechanisms of action based on antibiosis and induction of resistance in plants, although with similar effects. The results obtained reinforce the potential of biological control as a sustainable strategy for the management of agricultural diseases.
Downloads
References
BELL, D. K. et al. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, v. 72, n. 4, p. 379-382, 1982.
BOBROWSKI, Vera Lucia et al. Genes de Bacillus thuringiensis: uma estratégia para conferir resistência a insetos em plantas. Ciência Rural, v. 33, p. 843-850, 2003.
DE ARAÚJO, Francisco Pinheiro; MENEZES, Eduardo Assis; SANTOS, Carlos Antonio Fernandes. Recomendação de variedade de guandu forrageiro. 2004.
DE SOUZA, Caroline Gondim et al. Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Analytical and bioanalytical chemistry, v. 410, p. 6827-6836, 2018.
DE SOUZA, Fabiana América Silva Dantas et al. Optimization of production, biochemical characterization and in vitro evaluation of the therapeutic potential of fibrinolytic enzymes from a new Bacillus amyloliquefaciens. Macromolecular Research, v. 24, p. 587-595, 2016.
FIRA, D., DIMKIĆ, I., BERIĆ, T., LOZO, J., STANKOVIĆ, S. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, n.285, p. 44- 55, 2018.
FIRA, Djordje et al. Biological control of plant pathogens by Bacillus species. Journal of biotechnology, v. 285, p. 44-55, 2018.
GALEANO, RODRIGO MATTOS SILVA. Isolamento, caracterização bioquímica e potencial de Trichoderma spp. para promoção de crescimento da soja. 2024.Disponível em: https://bdtd.ibict.br/vufind/Record/UFMS_e8bda4f3db6c53b9fedd29cc8468f324. Acesso em: 12 jun. 2024.
GUIMARÃES, Gesiane Ribeiro et al. Ação de metabólitos voláteis e não voláteis de Trichoderma harzianum sobre o crescimento de Cladosporium herbarum. Pesquisa Agropecuária Pernambucana, v. 21, n. 1, p. 7-11, 2016.
HENRY, Guillaume; THONART, Philippe; ONGENA, Marc. PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. BASE, 2012.
KHALEDI, Nima; TAHERI, Parissa. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of plant protection research, v. 56, n. 1, 2016.
LANNA FILHO, Roberto; FERRO, Henrique Monteiro; PINHO, RSC de. Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, v. 4, n. 2, p. 12-20, 2010.
LEELASUPHAKUL, Wichitra; HEMMANEE, Punpen; CHUENCHITT, Samerchai. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest biology and technology, v. 48, n. 1, p. 113-121, 2008.
MARIANO, Rosa LR; SILVEIRA, Elineide B.; GOMES, Andréa MA. Controle biológico de doenças radiculares. Ecologia e Manejo de Patógenos Radiculares em Solos Tropicais, v. 5, p. 303-310, 2005.
MAZARO, Sérgio Miguel. Potencial de formulações de Beauveria bassiana para controlar Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) Potencial de las formulaciones de Beauveria bassiana para controlar Thaumastocoris. Research, Society and Development, v. 9, n. 10, p. e969108097, 2020.
MELO, T. A., NASCIMENTO, I. T. V. S., SERRA, I. M. R. de S. The Bacillus genus applied to the biological control of plant diseases. Research, Society and Development, n.10, v.9, 2021.
MUNIZ, Paulo Henrique Pereira Costa et al. Produção de conídios em substrato sólido e colonização superficial por Trichoderma harzianum. Revista de Agricultura Neotropical, v. 5, n. 4, p. 40-44, 2018.
NURBAILIS, Nurbailis et al. Potential of culture filtrate from Trichoderma spp. as biofungicide to Colletotrichum gloeosporioides causing anthracnose disease in chili. Biodiversitas Journal of Biological Diversity, v. 20, n. 10, 2019.
PARRA, José Roberto Postali et al. Controle biológico com parasitoides e predadores na agricultura brasileira. Fundação de Estudos Agrários Luiz de Queiroz, 2024.
PARRA, José RP. Controle biológico na agricultura brasileira. Entomological Communications, v. 1, p. 2675-1305, 2019.
RANGESHWARAN, R.; PRASAD, R. D. Biological control of Sclerotium rot of sunflower. Indian Phytopathology, v. 53, n. 4, p. 444-449, 2000.
SILVA JUNIOR, Amarildo Lima da. Lipopeptídeos de Bacillus velezensis como biofungicidas: identificação, biossíntese, atividade antifúngica e controle de doenças foliares. 2023.
SILVA, Manuel; TERUEL, Enrique. Petri nets for the design and operation of manufacturing systems. European journal of control, v. 3, n. 3, p. 182-199, 1997.
YE, Qingling et al. Efeito antifúngico de Bacillus velezensis ZN-S10 contra o patógeno vegetal Colletotrichum changpingense e seu mecanismo de inibição. International Journal of Molecular Sciences , v. 24, n. 23, p. 16694, 2023.